Hallo!
Ik zit vast met de volgende opgave. Ik moet de afgeleide berekenen van een functie en wil van de afgeleide de nulpunten berekenen. Wie wil meekijken waar ik een fout maak, want ik pak het vast verkeerd aan..
f(x)=25x²(x-1)³
f’(x)=50(x-1)³+25x²·3(x-1)²·1 =>
f’(x)=50x(x-1)³+75x²(x-1)²
Als eerste, klopt deze afgeleide wel..? Ik heb de ketting- en productregel toegepast.
Zo ja:
Nulpunten berekenen van f’(x) om de extreme waarden te bepalen:
50x(x-1)³+75x²(x-1)²=0
50x(x-1)(x-1)²+75x²(x²-2x+2)=0
50x(x-1)(x²-2x+2)+75-150x³+150x²=0
50x(x³-2x+2x-x²+2x-2)+ 75-150x³+150x²=0
50-100X³+100x²-50x³+100x²-100x=0
50-150X³+200x²-100x+75-150x³+150x²=0
125-300x³+350x²-100x=0
En nu weet ik het niet meer. Ik kan wel weer proberen te ontbinden in factoren maar heb net alles juist uitgerekend..
Ik heb het ook als volgt geprobeerd maar dit klopt ook niet want als ik de grafiek plot, komt er (0,0) en (1,0) uit..
50x(x-1)³+75X²(x-1)²=0
50x(x-1)³=-75X²(x-1)²
Allebei de kanten delen door (x-1)²
50x(x-1)=-75x²
-= (x-1)
= x-1
2(x-1)=-3x
2(x-1)+3x=0
2x-2+3x=0
5x=2
X=2,5
Ik snap bij beide berekeningen niet waar het fout gaat..
Afgeleide en nulpunten/extreme waarden
Re: Afgeleide en nulpunten/extreme waarden
Je afgeleide klopt (typo: de blauwe x in de 2e regel is weggevallen, maar in de 3e regel stond die er weer correct).Ladybird schreef: f(x)=25x²(x-1)³
f ’ (x)=50x(x-1)³+25x²·3(x-1)²·1 =>
f ’ (x)=50x(x-1)³+75x²(x-1)²
Dit ging inderdaad de verkeerde kant op: om nulpunten te vinden wil je juist ontbinden in factoren (en niet de producten die je al had uitwerken tot een veelterm).Ladybird schreef: Nulpunten berekenen van f’(x) om de extreme waarden te bepalen:
50x(x-1)³+75x²(x-1)²=0
..
En nu weet ik het niet meer. Ik kan wel weer proberen te ontbinden in factoren maar heb net alles juist uitgerekend..
Immers: als een product van factoren nul is, dan kan je elk van die factoren gelijk aan nul stellen om de oplossing(en) te vinden.
Je 2e manier gaat wel de goede kant op:
alleen moet je (x-1)² niet wegdelen (want (x-1)² zou ook nul kunnen zijn, en je mag niet door nul delen),Ladybird schreef: Ik heb het ook als volgt geprobeerd maar dit klopt ook niet want als ik de grafiek plot, komt er (0,0) en (1,0) uit..
50x(x-1)³+75X²(x-1)²=0
50x(x-1)³=-75X²(x-1)²
Allebei de kanten delen door (x-1)²
maar moet je (x-1)² buiten haakjes halen:
\(50x(x-1)^3+75x^2(x-1)^2=0\)
\(\Leftrightarrow \)
\((x-1)^2 \cdot \left(50x(x-1)+75x^2\right)=0\)
Kan je bij de 2e factor hierboven nog meer factoren buiten haakjes halen?
Kom je zo verder?
TIP:
Alternatief: je mag de formule f ' (x) = 0 ook eerst door 25 delen, dan worden de constanten wat kleiner, en dat maakt je uitwerking vaak wat overzichtelijker:
\(50x(x-1)^3+75x^2(x-1)^2=0\)
\(\Leftrightarrow \) (deel het linker en rechter lid door 25 (rechter lid: 0/25 blijft natuurlijk 0):)
\(2x(x-1)^3+3x^2(x-1)^2=0\)
\(\Leftrightarrow \)
\((x-1)^2 \cdot \left(2x(x-1)+3x^2\right)=0\)
Je mag dus ook met deze vergelijking verder werken.
Re: Afgeleide en nulpunten/extreme waarden
Enorm bedankt, ben er zeer mee geholpen )